
Copyright 2007 Raju Alluri. All rights reserved 1

Unix Internals
 Module 07
Raju Alluri
askraju @ spurthi.com

Copyright 2007 Raju Alluri. All rights reserved 2

Unix Internals, Module 07

● Device Drivers

● Streams

Copyright 2007 Raju Alluri. All rights reserved 3

Device Drivers

● Device Drivers

– Part of Kernel

– Collection of Data structures & Functions

– Only module that may interact with a device

● Benefits

– Isolation of device specific code

– Easy to add new devices

– Devices can be developed without kernel code

– Consistent view of devices to kernel (and hence to users)

Copyright 2007 Raju Alluri. All rights reserved 4

Hardware Configuration

● Devices are connect thru Controllers (Adapters)

● A Controller may connect more than one device

– Has “Control and Status Registers” for each device

– Control Registers used to perform actions on devices
● Repeatability of actions?
● Value written might not be same as value read

– Status registers used to get status

● Device Data Transfers
● Programmed I/O
● DMA
● DVMA

Copyright 2007 Raju Alluri. All rights reserved 5

Device Interrupts

● Devices use interrupts to get CPU attention

● Unix defines ipls (Interrupt Priority LevelS)

– Ranges from zero (lowest) to above

– Kernel/User code runs at ipls of zero

– Each Controller/Device uses a fixed ipl to interrupt

Copyright 2007 Raju Alluri. All rights reserved 6

Device Driver Framework

● Driver Classification

– Character Devices: Transfer arbitrary sized data
● Typically interrupt driven

– Block Devices: Transfer data in fixed sizes
● Typically do I/O to paged memory
● Use buf structures

● Special Drivers:

– drivers without devices (pseudo drivers)

– Mem driver: Access physical memory

– Null driver: data sink, used to write anything to a black hole

Copyright 2007 Raju Alluri. All rights reserved 7

Driver Code

● Driver Code

– Configuration: Boot time, to initialize

– I/O: by I/O subsystem to read/write

– Control: control operations like open/close/rewind

– Interrupts: Device to CPU communication (I/O completion,
error status etc.)

● Synchronous

– I/O & Control Code

● Asynchronous

– Interrupts

Copyright 2007 Raju Alluri. All rights reserved 8

Driver Code

● Driver Routines

– Top Half: Synchronous Code
● Execute in Process Context
● Acess address space and u area of the process
● May result in a sleep if needed

– Bottom Half: Asynchronous Code
● Mostly not related to current process
● Not allowed to access address space and u area of the process
● Not allowed to sleep

Copyright 2007 Raju Alluri. All rights reserved 9

Device Switches

● Block Device

struct bdevsw {

 int (*d_open)();

 int (*d_close)();

 int (*d_strategy)();

 int (*d_size)();

 int (*d_xhalt)();

} bdevsw[];

Copyright 2007 Raju Alluri. All rights reserved 10

Device Switches

● Character Device

struct cdevsw {

 int (*d_open)();

 int (*d_close)();

 int (*d_read)();

 int (*d_write)();

 int (*d_ioctl)();

 int (*d_mmap)();

 int (*d_segmap)();

 int (*d_xpoll)();

 int (*d_xhalt)();

 struct streamtab *d_str;

} cdevsw[];

Copyright 2007 Raju Alluri. All rights reserved 11

I/O Subsystem

● Major/Minor Device Numbers

● Device Files

● The specfs filesystem

● Common s-node

● Device Cloning

● I/O to a character device

Copyright 2007 Raju Alluri. All rights reserved 12

Major/Minor Device Numbers

● Major device number

– Identifies the type of device (i.e. Driver to be used)

– Typical Usage

(*bdevsw[getmajor(dev)].d_open)(dev,....)

● Minor device number

– Identifies specific instance of device

● dev_t is a combination of major/minor device numbers

● A single driver may be given multiple major numbers

● A single device may be given multiple minor numbers

Copyright 2007 Raju Alluri. All rights reserved 13

Major/Minor Device Numbers

● SVR4 dev_t: 32 bit info

– 14 bits for major device number

– 18 bits for minor device number

– Internal device numbers
● Identify the driver (index to driver switches)
● getmajor(), getminor()

– External device numbers
● User visible representation of the device
● Stored in i-node (i_rdev field) of the device special file
● getemajor(), geteminor()

Copyright 2007 Raju Alluri. All rights reserved 14

Device Files

● Kernel view: Device Numbers

● User view: device files

– Part of file system name space

– By convention, use /dev/....

– Has inode, but no blocks on file system

– Only super user creates these files using mknod()
● IFBLK, IFCHR

– Advantages
● User programs use same routines for devices and files
● Device file access thru regular file access control

Copyright 2007 Raju Alluri. All rights reserved 15

The specfs File System

● File system is accessed thru vfs/v-node interface

● Vnode of a ufs file points to a vector ufsops

– Ufsops has pointers to ufslookup(), ufsclose() etc.

● When device files reside on a vfs managed filesystem,
how to handle device file info?

– Vnode for /dev/lp has file type IFCHR
● Get device numbers from inode
● Pass them to specvp()
● Specvp() finds snode for file

Copyright 2007 Raju Alluri. All rights reserved 16

I/O to character device

● Driver does most of the work

● When a user opens the file

– Create snode & common snode

● When a user makes a read

– From file descriptor, dereference vnode

– Do VOP_READ on vnode, resulting a call to spec_read()

– spec_read() uses cdesw[] table because its a character device,
and calls d_read() routine

– d_read() for character device is a synchronous operation

Copyright 2007 Raju Alluri. All rights reserved 17

The poll() system call

● To multiplex I/O over several descriptors
● Checking each file descriptor will block until that descriptor is

ready
● What happens if other descriptors have data before the one you

are checking

● Poll() system call

poll(struct pollfd *fds, int nfds, int
timeout);

struct pollfd {

int fd;

short events;

short revents;

};

Copyright 2007 Raju Alluri. All rights reserved 18

The poll() system call

● Poll() system call

poll(struct pollfd *fds, int nfds, int
timeout);

– fds: array of pollfd struct elements

– events: POLLIN, POLLOUT, POLLERR

– timeout: if 0, return immediately

– timeout: if INFTIM or -1, wait until an event happens

Copyright 2007 Raju Alluri. All rights reserved 19

The poll() implementation

● Two key data structures

– Pollhead: Associated with each device file, maintains a queue
of polldat structures

– Polldat: identifies a process waiting for that device file and
interested events.

● Poll() system call implementation

– First, loop thru all vnodes of device files and do a
error = VOP_POLL(vnp, events, anyyet,
&revents, &php);

– If there is an event, then call pollwakeup() with pollhead of the
device

– If there is no event, add a polldat for current process to the
pollhead

Copyright 2007 Raju Alluri. All rights reserved 20

The poll() implementation

● Poll() system call implementation
– pollwakeup() traverses thru the polldat chain for the pollhead and

wakesup each process with event info.

Copyright 2007 Raju Alluri. All rights reserved 21

The select() system call

● 4.3 BSD has a select() system call similar to that of poll()

– Select(nfds, readfds, writefds, exceptfds, timeout);

– Readfds, writefds exceptfds are pointers to descriptor sets
● Fixed size arrays (size nfds) where non-zero values indicate file

descriptors of interest
● Operations on descriptor sets

– FD_SET(fd, fdset)
– FD_CLR(fd, fdset)
– FD_ISSET(fd, fdset)
– FD_ZERO(fdset)

Copyright 2007 Raju Alluri. All rights reserved 22

Block I/O

● Block I/O has more involvement of I/O subsystem

● Two types of block devices

– raw/unformatted
● Direct access thru device files

– Those that contain unix filesystems
● Reading/writing to a ordinary file
● Reading/writing to a device file
● Accessing a memory mapped file
● Paging to/from a swap device

Copyright 2007 Raju Alluri. All rights reserved 23

The buf structure

● The buf structure has the following data
● Major/Minor device number
● Starting block number of data on device
● Number of bytes to transfer (multiples of sector size)
● Location of data in memory
● Flags (read/write, synchronous or not)
● Address of completion routine to be called from interrupt

handler

Copyright 2007 Raju Alluri. All rights reserved 24

The buf structure

● Modern Unix Systems also have
● Pointer to the vnode of the device file
● Flags that state the state of the buffer (free/busy, dirty)
● Aged flag
● Pointers to keep buffer in on an LRU free list
● Pointers to chain the buffer in hash queue (vnode/block number)

Copyright 2007 Raju Alluri. All rights reserved 25

Device access methods

● Pageout operations

– Pagedaemon flushes dirty pages to disk (keep mostly used
pages in memory) regulary

– Locates vnode from page structure, invokes VOP_PUTPAGE
● For device files, it calls spec_putpage(), resulting in d_strategy()

call
● For ordinary files, it calls ufs_putpage(), which calls ufs_bmap()

(to compute physical block number) and then d_strategy()

Copyright 2007 Raju Alluri. All rights reserved 26

Device access methods

● Pageout operations

– Pagedaemon flushes dirty pages to disk (keep mostly used
pages in memory) regulary

– Locates vnode from page structure, invokes VOP_PUTPAGE
● For device files, it calls spec_putpage(), resulting in d_strategy()

call
● For ordinary files, it calls ufs_putpage(), which calls ufs_bmap()

(to compute physical block number) and then d_strategy()

Copyright 2007 Raju Alluri. All rights reserved 27

Device access methods

● Mapped I/O to a file

– Whenever a process accesses a mmap()ed area and the page is
NOT already in memory, a pague fault occurs

– The fault is handled by segvn_fault(), which invokes
VOP_GETPAGE()

Copyright 2007 Raju Alluri. All rights reserved 28

Device access methods

● Ordinary File I/O

– Reading a file using read() results in an VOP_READ.

– For ordinary files, VOP_READ() translates to file system
specific read, e.g. ufs_read()
● ufs_read() calls segmap_getmap() to get the data mapping
● Calls uiomove() to transfer data from file to user space
● Calls segmap_release() to free the mapping. This mapping is

cached for any subsequent use of the same page

Copyright 2007 Raju Alluri. All rights reserved 29

Device access methods

● Direct I/O to block device

– Reading a block device using read() results in an VOP_READ.

– For device files, VOP_READ results in spec_read()

– spec_read() behaves almost similar to ufs_read()

● Direct I/O to block device using mmap()ed I/O

– Not having a page in memory causes segvn_fault(), which
would invoke VOP_GETPAGE

– VOP_GETPAGE calls spec_getpage()

– spec_getpage() calls d_strategy() of the device

Copyright 2007 Raju Alluri. All rights reserved 30

Raw I/O to block device

● Regualr read()/write() calls copy the data twice

– Once between user process & kernel and then to device

● Raw I/O to device is handled by character interface

– Do raw i/o using character switch entry of the device

– Result in calling the d_read() or d_write() (which calls
physiock() of kernel)
● Validates I/O parameters, allocates buf struct
● Calls as_fault() to cause fault and lock the pages
● Calls d_strategy() of the device and sleep until I/O completes
● Unlock user pages and return results

Copyright 2007 Raju Alluri. All rights reserved 31

Streams

● Classic Character Drivers have limitations
● Different vendors (drivers) may replicate the same code,

resulting in large size kernels
● Not buffered and hence inefficient for modern character devices

(network interfaces)
● Limited facilities to applications

● Streams address many of these issues
● Consist of multiple modules, which can be shared among

multiple devices
● Can provide application level features
● Provide buffering abilities

Copyright 2007 Raju Alluri. All rights reserved 32

Streams Overview
● Stream Head

● Interaction with user applications, part of kernel space

● Modules
● One or more components of the stream
● Reusable across multiple streams
● Each module contains a pair of queues

– Write Queue & Read Queue

● Driver End
● Interface to the hardware

● Upstream & Downstream
● Combination of Read Queues & Write Queues of ALL modules

Copyright 2007 Raju Alluri. All rights reserved 33

Streams Overview

User
Application

Stream Head
W R

W R

Driver End
W R

Downstream Upstream

Copyright 2007 Raju Alluri. All rights reserved 34

Reusable Modules

User
Application

Stream Head

TCP

Token Ring

IP

User
Application

Stream Head

UDP

Ethernet

IP

Copyright 2007 Raju Alluri. All rights reserved 35

Reusable Modules

User

Stream Head

TCP

Token Ring

IP

UDP

Ethernet

User

Stream Head

User

Stream Head

User

Stream Head

Copyright 2007 Raju Alluri. All rights reserved 36

Streams Overview
● Multiplexing Modules/Drivers

● Drivers/Modules that can connect to more than one
Driver/Module at the top or bottom

● Fan-in (Upper) multiplexer
– One that can connect to more than one modules above it

● Fan-out (Lower) multiplexer
– One that can connect to more than one modules below it

● Messages & Queues
● Passing messages is the only form of communication
● Messages are processed thru queues at each module

Copyright 2007 Raju Alluri. All rights reserved 37

Messages
● Simplest Message

● struct msgb
● struct datab
● Data buffer

● Multipart messages
● Several of above triplets
● Useful in layered protocol implementations where each layer

adds/removes a message triplet

● Virtual copying
● Struct datab has a reference count field (db_ref) and this struct

can be used by multiple msgb structures

Copyright 2007 Raju Alluri. All rights reserved 38

Messages

b_next
b_prev
b_datap
b_rptr
b_wptr
b_cont
b_band ...

db_f
db_base
db_lim
db_ref
db_type ...

struct msgb
struct datab

Data buffer

Copyright 2007 Raju Alluri. All rights reserved 39

Messages
● Message Types

● Some types are for upstream, some are for downstream
● For full list, refer to p553-554 of “Unix Internals”

Copyright 2007 Raju Alluri. All rights reserved 40

Queues
● Each module has two queues

● Each queue consists of zero or more messages lined up
(message queue) for processing

● Struct qinit
● Has a set of methods & pointers (qi_putp, qi_srvp, qi_qopen,

qi_qclose, qi_mstat, qi_minfo)
– Open and close are called by processes synchronously
– Put processes the message immediately, when possible. Else, adds

message to message queue
– Service method handles messages in message queue (delayed

processing)

Copyright 2007 Raju Alluri. All rights reserved 41

Queues

q_qinfo
q_first
q_last
q_next
q_link
q_ptr
q_hiwat
...

struct queue
struct qinit

q_qinfo
q_first
q_last
q_next
q_link
q_ptr
q_hiwat
...

W R

Copyright 2007 Raju Alluri. All rights reserved 42

Queues

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
qi_mstat
...

struct module_info

struct module_stat

Copyright 2007 Raju Alluri. All rights reserved 43

Stream I/O
● User does a write/putmsg system call for writing to

device
● Stream head allocates a message and copies data to it
● Sends it downstream to the next queue
● Eventually, data reaches driver

● Queues pass message to the next one using putnext()
● Identify the next queue using q_next
● Results in invoking put procedure of the next queue

Copyright 2007 Raju Alluri. All rights reserved 44

Stream I/O
● Nature of procedures

● Put and service procedures are non-blocking
● Both of them keep the messages in queue if processing cannot be

done rightaway
● Need own memory allocation procedures that are non-blocking

– allocb()
– bufcall()

● Service procedures are scheduled in system context, not the
process context

Copyright 2007 Raju Alluri. All rights reserved 45

Configuration and Setup
● Each module has three configuration structures

● streamtab, qinit, module_info
● Streamtab contains two pointers to qinit structures
● Qinit structures point to module_info

– module_info contains default parameters of the module, which are
copied to the queue structures upon opening the module.

– These parameters in queue structures can be overwritten later by
ioctl() calls

●

Copyright 2007 Raju Alluri. All rights reserved 46

Structs for Configuring a Module/Driver

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
...

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
...

struct streamtab

st_rdinit
st_wrinit
st_muxrinit
st_muxwinit
...

struct module_info

mi_idnum
mi_idname
mi_minpsz
mi_maxpsz
mi_hiwat
mi_lowat
...

Copyright 2007 Raju Alluri. All rights reserved 47

Configuration and Setup
● Streams modules

● Managed by fmodsw[] switch
● Identified by f_name (mi_idname of the module_info)
● f_str pointer points to related streamtab

● Streams drivers
● The d_str pointer in cdevsw is NOT NULL and points to the

streamtab structure
● Configuration includes

– Create appropriate device files
– Use right device numbers

Copyright 2007 Raju Alluri. All rights reserved 48

Configuring a Module/Driver

streamtab

qinit
(read)

qinit
(write)

f_name f_str

fmodsw[]

streamtab

qinit
(read)

qinit
(write)

d_str

cdevsw[]

Module

Driver

