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Unix Internals, Module 07

● Device Drivers

● Streams
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Device Drivers

● Device Drivers

– Part of Kernel

– Collection of Data structures & Functions

– Only module that may interact with a device

● Benefits

– Isolation of device specific code

– Easy to add new devices

– Devices can be developed without kernel code

– Consistent view of devices to kernel (and hence to users)
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Hardware Configuration

● Devices are connect thru Controllers (Adapters)

● A Controller may connect more than one device

– Has “Control and Status Registers” for each device

– Control Registers used to perform actions on devices
● Repeatability of actions?
● Value written might not be same as value read

– Status registers used to get status

● Device Data Transfers
● Programmed I/O
● DMA
● DVMA
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Device Interrupts

● Devices use interrupts to get CPU attention

● Unix defines ipls (Interrupt Priority LevelS)

– Ranges from zero (lowest) to above

– Kernel/User code runs at ipls of zero

– Each Controller/Device uses a fixed ipl to interrupt
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Device Driver Framework

● Driver Classification

– Character Devices: Transfer arbitrary sized data
● Typically interrupt driven

– Block Devices: Transfer data in fixed sizes
● Typically do I/O to paged memory
● Use buf structures

● Special Drivers: 

– drivers without devices (pseudo drivers)

– Mem driver: Access physical memory

– Null driver: data sink, used to write anything to a black hole
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Driver Code

● Driver Code

– Configuration: Boot time, to initialize

– I/O: by I/O subsystem to read/write

– Control: control operations like open/close/rewind

– Interrupts: Device to CPU communication (I/O completion, 
error status etc.)

● Synchronous

– I/O & Control Code

● Asynchronous

– Interrupts
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Driver Code

● Driver Routines

– Top Half: Synchronous Code
● Execute in Process Context
● Acess address space and u area of the process
● May result in a sleep if needed

– Bottom Half: Asynchronous Code
● Mostly not related to current process
● Not allowed to access address space and u area of the process
● Not allowed to sleep
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Device Switches

● Block Device

struct bdevsw {

  int (*d_open)();

  int (*d_close)();

  int (*d_strategy)();

  int (*d_size)();

  int (*d_xhalt)();

} bdevsw[];
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Device Switches

● Character Device

struct cdevsw {

  int (*d_open)();

  int (*d_close)();

  int (*d_read)();

  int (*d_write)();

  int (*d_ioctl)();

  int (*d_mmap)();

  int (*d_segmap)();

  int (*d_xpoll)();

  int (*d_xhalt)();

  struct streamtab *d_str;

} cdevsw[];
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I/O Subsystem

● Major/Minor Device Numbers

● Device Files

● The specfs filesystem

● Common s-node

● Device Cloning

● I/O to a character device
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Major/Minor Device Numbers

● Major device number

– Identifies the type of device (i.e. Driver to be used)

– Typical Usage

(*bdevsw[getmajor(dev)].d_open)(dev,....)

● Minor device number

– Identifies specific instance of device

● dev_t is a combination of major/minor device numbers

● A single driver may be given multiple major numbers

● A single device may be given multiple minor numbers
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Major/Minor Device Numbers

● SVR4 dev_t: 32 bit info

– 14 bits for major device number

– 18 bits for minor device number

– Internal device numbers
● Identify the driver (index to driver switches)
● getmajor(), getminor()

– External device numbers
● User visible representation of the device
● Stored in i-node (i_rdev field) of the device special file
● getemajor(), geteminor()
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Device Files

● Kernel view: Device Numbers

● User view: device files

– Part of file system name space

– By convention, use /dev/....

– Has inode, but no blocks on file system

– Only super user creates these files using mknod()
● IFBLK, IFCHR

– Advantages
● User programs use same routines for devices and files
● Device file access thru regular file access control
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The specfs File System

● File system is accessed thru vfs/v-node interface

● Vnode of a ufs file points to a vector ufsops

– Ufsops has pointers to ufslookup(), ufsclose() etc.

● When device files reside on a vfs managed filesystem, 
how to handle device file info?

– Vnode for /dev/lp has file type IFCHR
● Get device numbers from inode
● Pass them to specvp()
● Specvp() finds snode for file
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I/O to character device

● Driver does most of the work

● When a user opens the file

– Create snode & common snode

● When a user makes a read

– From file descriptor, dereference vnode

– Do VOP_READ on vnode, resulting a call to spec_read()

– spec_read() uses cdesw[] table because its a character device, 
and calls d_read() routine

– d_read() for character device is a synchronous operation
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The poll() system call

● To multiplex I/O over several descriptors
● Checking each file descriptor will block until that descriptor is 

ready
● What happens if other descriptors have data before the one you 

are checking

● Poll() system call

poll(struct pollfd *fds, int nfds, int 
timeout);

struct pollfd {

int fd;

short events;

short revents;

};
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The poll() system call

● Poll() system call

poll(struct pollfd *fds, int nfds, int 
timeout);

– fds: array of pollfd struct elements

– events: POLLIN, POLLOUT, POLLERR

– timeout: if 0, return immediately

– timeout: if INFTIM or -1, wait until an event happens
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The poll() implementation

● Two key data structures

– Pollhead: Associated with each device file, maintains a queue 
of polldat structures

– Polldat: identifies a process waiting for that device file and 
interested events.

● Poll() system call implementation

– First, loop thru all vnodes of device files and do a
error = VOP_POLL(vnp, events, anyyet, 
&revents, &php);

– If there is an event, then call pollwakeup() with pollhead of the 
device

– If there is no event, add a polldat for current process to the 
pollhead
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The poll() implementation

● Poll() system call implementation
– pollwakeup() traverses thru the polldat chain for the pollhead and 

wakesup each process with event info.



Copyright 2007 Raju Alluri. All rights reserved  21

The select() system call

● 4.3 BSD has a select() system call similar to that of poll()

– Select(nfds, readfds, writefds, exceptfds, timeout);

– Readfds, writefds exceptfds are pointers to descriptor sets
● Fixed size arrays (size nfds) where non-zero values indicate file 

descriptors of interest
● Operations on descriptor sets

– FD_SET(fd, fdset)
– FD_CLR(fd, fdset)
– FD_ISSET(fd, fdset)
– FD_ZERO(fdset)
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Block I/O

● Block I/O has more involvement of I/O subsystem

● Two types of block devices

– raw/unformatted
● Direct access thru device files

– Those that contain unix filesystems
● Reading/writing to a ordinary file
● Reading/writing to a device file
● Accessing a memory mapped file
● Paging to/from a swap device
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The buf structure

● The buf structure has the following data
● Major/Minor device number
● Starting block number of data on device
● Number of bytes to transfer (multiples of sector size)
● Location of data in memory
● Flags (read/write, synchronous or not)
● Address of completion routine to be called from interrupt 

handler
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The buf structure

● Modern Unix Systems also have
● Pointer to the vnode of the device file
● Flags that state the state of the buffer (free/busy, dirty)
● Aged flag
● Pointers to keep buffer in on an LRU free list
● Pointers to chain the buffer in hash queue (vnode/block number)
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Device access methods

● Pageout operations

– Pagedaemon flushes dirty pages to disk (keep mostly used 
pages in memory) regulary

– Locates vnode from page structure, invokes VOP_PUTPAGE
● For device files, it calls spec_putpage(), resulting in d_strategy() 

call
● For ordinary files, it calls ufs_putpage(), which calls ufs_bmap() 

(to compute physical block number) and then d_strategy()
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Device access methods

● Pageout operations

– Pagedaemon flushes dirty pages to disk (keep mostly used 
pages in memory) regulary

– Locates vnode from page structure, invokes VOP_PUTPAGE
● For device files, it calls spec_putpage(), resulting in d_strategy() 

call
● For ordinary files, it calls ufs_putpage(), which calls ufs_bmap() 

(to compute physical block number) and then d_strategy()
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Device access methods

● Mapped I/O to a file

– Whenever a process accesses a mmap()ed area and the page is 
NOT already in memory, a pague fault occurs

– The fault is handled by segvn_fault(), which invokes 
VOP_GETPAGE()
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Device access methods

● Ordinary File I/O

– Reading a file using read() results in an VOP_READ.

– For ordinary files, VOP_READ() translates to file system 
specific read, e.g. ufs_read()
● ufs_read() calls segmap_getmap() to get the data mapping
● Calls uiomove() to transfer data from file to user space
● Calls segmap_release() to free the mapping. This mapping is 

cached for any subsequent use of the same page
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Device access methods

● Direct I/O to block device

– Reading a block device using read() results in an VOP_READ.

– For device files, VOP_READ results in spec_read()

– spec_read() behaves almost similar to ufs_read()

● Direct I/O to block device using mmap()ed I/O

– Not having a page in memory causes segvn_fault(), which 
would invoke VOP_GETPAGE

– VOP_GETPAGE calls spec_getpage()

– spec_getpage() calls d_strategy() of the device



Copyright 2007 Raju Alluri. All rights reserved  30

Raw I/O to block device

● Regualr read()/write() calls copy the data twice

– Once between user process & kernel and then to device

● Raw I/O to device is handled by character interface

– Do raw i/o using character switch entry of the device

– Result in calling the d_read() or d_write() (which calls 
physiock() of kernel)
● Validates I/O parameters, allocates buf struct
● Calls as_fault() to cause fault and lock the pages
● Calls d_strategy() of the device and sleep until I/O completes
● Unlock user pages and return results
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Streams

● Classic Character Drivers have limitations
● Different vendors (drivers) may replicate the same code, 

resulting in large size kernels
● Not buffered and hence inefficient for modern character devices 

(network interfaces)
● Limited facilities to applications

● Streams address many of these issues
● Consist of multiple modules, which can be shared among 

multiple devices
● Can provide application level features
● Provide buffering abilities
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Streams Overview
● Stream Head

● Interaction with user applications, part of kernel space

● Modules
● One or more components of the stream
● Reusable across multiple streams
● Each module contains a pair of queues

– Write Queue & Read Queue

● Driver End
● Interface to the hardware

● Upstream & Downstream
● Combination of Read Queues & Write Queues of ALL modules
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Streams Overview

User
Application

Stream Head
W R

W R

Driver End
W R

Downstream Upstream
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Reusable Modules

User
Application

Stream Head

TCP

Token Ring

IP

User
Application

Stream Head

UDP

Ethernet

IP
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Reusable Modules

User
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User
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User

Stream Head

User
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Streams Overview
● Multiplexing Modules/Drivers

● Drivers/Modules that can connect to more than one 
Driver/Module at the top or bottom

● Fan-in (Upper) multiplexer
– One that can connect to more than one modules above it

● Fan-out (Lower) multiplexer
– One that can connect to more than one modules below it

● Messages & Queues
● Passing messages is the only form of communication
● Messages are processed thru queues at each module



Copyright 2007 Raju Alluri. All rights reserved  37

Messages
● Simplest Message

● struct msgb
● struct datab
● Data buffer

● Multipart messages
● Several of above triplets
● Useful in layered protocol implementations where each layer 

adds/removes a message triplet

● Virtual copying
● Struct datab has a reference count field (db_ref) and this struct 

can be used by multiple msgb structures
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Messages

b_next
b_prev
b_datap
b_rptr
b_wptr
b_cont
b_band ...

db_f
db_base
db_lim
db_ref
db_type ...

struct msgb
struct datab

Data buffer



Copyright 2007 Raju Alluri. All rights reserved  39

Messages
● Message Types

● Some types are for upstream, some are for downstream
● For full list, refer to p553-554 of “Unix Internals”
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Queues
● Each module has two queues

● Each queue consists of zero or more messages lined up 
(message queue) for processing

● Struct qinit
● Has a set of methods & pointers (qi_putp, qi_srvp, qi_qopen, 

qi_qclose, qi_mstat, qi_minfo)
– Open and close are called by processes synchronously
– Put processes the message immediately, when possible. Else, adds 

message to message queue
– Service method handles messages in message queue (delayed 

processing)
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Queues

q_qinfo
q_first
q_last
q_next
q_link
q_ptr
q_hiwat
...

struct queue
struct qinit

q_qinfo
q_first
q_last
q_next
q_link
q_ptr
q_hiwat
...

W R
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Queues

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
qi_mstat
...

struct module_info

struct module_stat
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Stream I/O
● User does a write/putmsg system call for writing to 

device
● Stream head allocates a message and copies data to it
● Sends it downstream to the next queue
● Eventually, data reaches driver

● Queues pass message to the next one using putnext()
● Identify the next queue using q_next
● Results in invoking put procedure of the next queue
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Stream I/O
● Nature of procedures

● Put and service procedures are non-blocking
● Both of them keep the messages in queue if processing cannot be 

done rightaway
● Need own memory allocation procedures that are non-blocking

– allocb()
– bufcall()

● Service procedures are scheduled in system context, not the 
process context
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Configuration and Setup
● Each module has three configuration structures

● streamtab, qinit, module_info
● Streamtab contains two pointers to qinit structures
● Qinit structures point to module_info

– module_info contains default parameters of the module, which are 
copied to the queue structures upon opening the module.

– These parameters in queue structures can be overwritten later by 
ioctl() calls

●
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Structs for Configuring a Module/Driver

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
...

struct qinit

qi_putp
qi_svcp
qi_qopen
qi_qclose
qi_minfo
...

struct streamtab

st_rdinit
st_wrinit
st_muxrinit
st_muxwinit
...

struct module_info

mi_idnum
mi_idname
mi_minpsz
mi_maxpsz
mi_hiwat
mi_lowat
...



Copyright 2007 Raju Alluri. All rights reserved  47

Configuration and Setup
● Streams modules

● Managed by fmodsw[] switch
● Identified by f_name (mi_idname of the module_info)
● f_str pointer points to related streamtab

● Streams drivers
● The d_str pointer in cdevsw is NOT NULL and points to the 

streamtab structure
● Configuration includes

– Create appropriate device files
– Use right device numbers
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Configuring a Module/Driver

streamtab

qinit
(read)

qinit
(write)

f_name f_str

fmodsw[]

streamtab

qinit
(read)

qinit
(write)

d_str

cdevsw[]

Module

Driver


